
302 IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 7, NO. 9, SEPTEMBER 1997

Extension of Berenger’s Absorbing Boundary
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Abstract—The authors propose an extension of Berenger’s
perfectly matched layer (PML) absorbing boundary conditions
(ABC’s) to achieve a perfect matching of waves propagating in
anisotropic media. Although the procedure to obtain the matching
conditions is valid for any kind of anisotropic material, it has
been validated with a lossless two-dimensional uniaxial medium,
in which the optical axis is not contained in its plane section. The
finite difference time domain method, with an alternative scheme
for anisotropic media, is used to simulate the problem and to
obtain the numerical reflection coefficient.

Index Terms—Absorbing boundary conditions, anisotropic me-
dia, FDTD methods, perfect matching layers.

I. INTRODUCTION

T HE application of finite methods to the open problem
of propagation of electromagnetic waves in unbounded

media requires the use of the so-called absorbing boundary
conditions (ABC’s) in order to truncate the computational
region. Berenger’s perfectly matched layer (PML) ABC’s [1],
[2] is an outstanding contribution which greatly reduces the
reflection coefficients obtained with previous methods when
applied to isotropic media.

The propagation of waves in anisotropic materials, which
are commonly used in microwave components, microstrip
waveguides, and fiber optics, is an area of current interest.
Unfortunately ABC’s based on one-way operators cannot be
applied to anisotropic materials. The authors have recently
proven [3] that Berenger’s ABC’s cannot provide a general
matching condition capable of simultaneously absorbing the
ordinary and extraordinary modes propagating in a general
anisotropic medium; its application was then limited to the
uncoupled problem of propagation in a two-dimensional (2-
D) anisotropic medium with the optical axis contained in
its plane. In this letter we propose a method to effectively
extend Berenger’s PML to achieve a perfect matching of
arbitrary waves propagating in anisotropic media, with the
optical axis arbitrarily oriented. Although the procedure to
obtain the matching conditions is valid for any kind of
anisotropic material, in this letter we limit ourselves, for
simplicity, to the general 2-D problem of absorbing a wave
propagating in a lossless anisotropic medium (LAM). Results
are presented for the simultaneous absorption of an ordinary
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and an extraordinary mode propagating in a 2-D uniaxial
LAM in which the optical axis is not contained in its plane.
The finite-difference time-domain (FDTD) method, with an
alternative scheme for anisotropic media [4], [5], is used to
simulate the problem and to obtain the numerical reflection
coefficient.

II. THE PML PROBLEM

The problem of obtaining a PML to absorb incoming waves
from a given medium can be summarized in a simple manner.
Suppose that a plane wave propagates in a lossless medium

in the direction with phase velocity

(1)

and strikes a PML interface at the plane . This PML must
provide a finite reflectionless region for all angles of incidence.
Consequently, there must be perfect matching between the
original and the PML media, and the transmitted wave must be
attenuated in the latter. This is attained by choosing a complex
propagation factor such that the transmitted wave in the
matching layer has the form

(2)

Nonreflection at the interface is ensured by imposing the
following two conditions.

1) The relation between the field components in the inci-
dent medium must be the same as in the PML.

2) The exponentials of (1) and (2) must take the same
values at the interface

(3)

Notice that this condition is satisfied independently ofif

(4)

III. M ATCHING ANISOTROPIC MEDIA

In order to impose the above two conditions, in this section
we will first write Maxwell’s equations for the anisotropic
medium, and then we will propose an extended PML (EPML)
that achieves the matching.

Let us consider a LAM for which Maxwell’s rotational
equations in the frequency domain are

(5)

where is the real and symmetrical dielectric tensor
of the medium.
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The relation between the components of the plane wave of
(1) is

(6)

Let the wave propagation take place in the plane of
a 2-D LAM with the optical axis arbitrarily oriented, so that

. Equations (5) then become

(7a)

(7b)

(7c)

(7d)

(7e)

(7f)

and relation (6) becomes

(8a)

(8b)

(8c)

(8d)

(8e)

(8f)

To obtain the characteristics of the EPML that generalizes
Berenger’s method to anisotropic media, the transver-
sal field components are split into two subcomponents,

and and (7e) and (7f)
into (9e), (9f) and (9g), (9h), respectively. Furthermore, the
real constants in (7) are allowed to take complex values

and .

(9a)

(9b)

(9c)

(9d)

(9e)

(9f)

(9g)

(9h)

To derive the relation between the field components in the
EPML, (2) must be inserted into the above equations, obtaining

(10a)

(10b)

(10c)

(10d)

(10e)

(10f)

(10g)

Identifying relations (8) and (10), condition 1) of Section II
is satisfied for all and if

(11a)

(11b)

and condition 2) [see (4)] is satisfied if . Given that
can be arbitrarily chosen, it is taken such that the transmitted
wave is attenuated within the EPML. Specifically we take1

(12)

Then a wave propagating in the EPML has the form

(13)

which after crossing the EPML is reflected by perfectly
conducting conditions which end the domain. We choose for

a profile, as in [1], of the form

(14)

with a maximum value for the distance from the
beginning of the EPML and the total depth of the EPML
medium. The theoretical reflection coefficient, as a function of
the incidence angle is then

(15)

1Berenger defines an electric conductivity in the isotropic case that fulfills
�z =

"

�
�
�

z
. This could be translated to the present anisotropic case by defining

a set of electric conductivities of the form�z =

"

�
�
�

z
.
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Fig. 1. Reflection coefficient as a function of the incidence angle.

IV. RESULTS AND CONCLUSIONS

In summary, perfect matching has been attained in the two
following steps.

1) Two sets of conditions are obtained: first, the ones
derived from requiring the relations between the field
components to be the same for the waves propagating
in the EPML and for the waves propagating in the
anisotropic medium; and secondly, the ones derived
from the enforcement of the continuity of the exponen-
tials [see (4)].

2) The characteristics of the EPML are chosen so that the
waves propagating in it are attenuated.

We have numerically validated the above results by simu-
lating the incidence with a EPML of monochromatic ordinary
and extraordinary plane waves propagating in a uniaxial 2-D
LAM lying in the plane. This has been carried out using an
alternative scheme of the FDTD method to handle anisotropic
materials.

The dielectric tensor of the anisotropic material used in
the numerical tests has, in its principal coordinate system, the
following elements: . The
optical axis is contained in the plane forming an angle

with the -axis. The EPML medium was chosen
with a depth of eight spatial cells, with a quadratic variation
of [ in (14)] and a theoretical reflection coefficient
for normal incidence of [see (15)]. Fig. 1 shows
a comparison of the numerical reflection coefficient with the
theoretical reflection coefficient as a function of the angle of
incidence . Similar conclusions to those obtained in [3] may
be drawn from this matching.
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